One-Way ANOVA

Calculating the Sum of Squares Within (SSW)

The within-sample sum of squares (SSW) is a measure of the remaining variablility in the data after applying the model. It is also a non-standardized measure of how well the model fits the data. Larger values of SSW indicate the model fits the data worse, all things being equal. The SSW is sometime called the sum of square due to error (SSE) by some sources.

As usual, these calculations refer only to the one-way completely randomized design, the most basic of sample designs.

The Problem

Example #103: Let us test the null hypothesis that the average yield does not depend upon the treatment used. Since there are 5 treatments in this experiment, the hypotheses are

H0 : μ1 = μ2 = μ3 = μ4 = μ5
HA : At least one mean differs from the others.

To test this hypothesis, we collect data. The data consist of two measurements on each unit: yield value and treatment level. (Note that yield is assumed numeric and treatment is assumed categorical.) It is typical to group the experimental units by treatment level. Thus, our data are

Treatment 1:
11, 8, 12, 8, 17, 12, 12, 11, 16

Treatment 2:
13, 12, 7, 14, 13, 8, 14, 12

Treatment 3:
12, 11, 12, 11, 14, 16, 2, 14, 15

Treatment 4:
14, 14, 11, 17, 9, 7, 10, 10, 15, 11

Treatment 5:
14, 15, 14

With this information, calculate the sum of squares within (SSW) for the data.

Information given:

To summarize the above, the values of import are:

Summary statistics from the problem
\( \bar{x} \) =
 
\( \bar{x}_1 \) =
\( \bar{x}_2 \) =
\( \bar{x}_3 \) =
\( \bar{x}_4 \) =
\( \bar{x}_5 \) =
 
\( n_1 \) =
\( n_2 \) =
\( n_3 \) =
\( n_4 \) =
\( n_5 \) =

Your Answer

In the box below, please enter the sum of squares within (SSW) for the data, then click on the “Check your answer!” button. Please round your answer to the ten-thousandths place.

Assistance

Show Formula

Show Solution

Show the R Code

© Ole J. Forsberg, Ph.D. 2025. All rights reserved.   .